
Grooving or recessing operations, sometimes also called necking operations, are often done on workpiece shoulders to ensure the correct fit for mating parts. When a thread is required to run the full length of the part to a shoulder, a groove is usually machined to allow full travel of the nut. Grooving the workpiece prior to cylindrical grinding operations allows the grinding wheel to completely grind the workpiece without touching the shoulder.
Face Grooving
With face grooving operations the tool is fed axially rather than radially toward the end surface of the workpiece. The parting & grooving tool must be adapted to the radial curve of the groove and the blade is therefore curved. When the machine spindle rotates in a counter-clockwise direction, a right-hand version of the grooving tool is used and a left-hand version is used when the machine spindle rotates clockwise.
So that both insert and tool holder fit into the groove, both the outer and inner diameters of the groove must be considered. The diameter measured to the outside of the blade determines the limit for the smallest possible diameter which can be machined, and the diameter measured to the inside of the blade determines the limit for the largest possible groove diameter.
Parting or Cutoff Operations
In parting operations the workpiece rotates while the tool carries out a radial feed movement. As with face turning, the tool is fed from the periphery of the workpiece toward the center and the cutting speed is reduced to zero — but here the similarities end.
As the cutting tool progresses toward the center, another factor takes effect. As the diameter of the workpiece is reduced, the radial cutting force will cause the material to break before the insert has cut through it. This results in a pip or burr being formed in the center of the workpiece. This pip will always be there after parting, but its size can be reduced by choosing the correct insert geometry, feedrate, and support for the sagging workpiece.
Face Grooving
With face grooving operations the tool is fed axially rather than radially toward the end surface of the workpiece. The parting & grooving tool must be adapted to the radial curve of the groove and the blade is therefore curved. When the machine spindle rotates in a counter-clockwise direction, a right-hand version of the grooving tool is used and a left-hand version is used when the machine spindle rotates clockwise.
So that both insert and tool holder fit into the groove, both the outer and inner diameters of the groove must be considered. The diameter measured to the outside of the blade determines the limit for the smallest possible diameter which can be machined, and the diameter measured to the inside of the blade determines the limit for the largest possible groove diameter.
Parting or Cutoff Operations
In parting operations the workpiece rotates while the tool carries out a radial feed movement. As with face turning, the tool is fed from the periphery of the workpiece toward the center and the cutting speed is reduced to zero — but here the similarities end.
As the cutting tool progresses toward the center, another factor takes effect. As the diameter of the workpiece is reduced, the radial cutting force will cause the material to break before the insert has cut through it. This results in a pip or burr being formed in the center of the workpiece. This pip will always be there after parting, but its size can be reduced by choosing the correct insert geometry, feedrate, and support for the sagging workpiece.